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Abstract 

This p p e ~  contains an ovelsrfsw of a theoretic- 
al frmenaxk for the design of reliable adtivariable 
control systcms, w i t h  specidl emphasis on actuator 
faitures and ~ e ~ e ~ s a r p  actuator redundancy levels. 
Using a U e a x  &a1 of t!ie system, wit! Yarkovian 
iailltre probabut ies  and quadratic perfo;rsance in- 
dex, an optlmal stochasec control problem is posed 
and solv@d. Tbe solution r q u k e s  the itexatian of 
a s e t  of highly coupled ? l c u t i - l i k e  matrfx differ- 
ence equations; i f  thesa converge one has a s- - able design: if  *ey dive-?e, the design is - liable, and the s y s t m  desiqn camat be stabilized. 

In cddition, it is Shawn at the existcurce of 
a stabil%np constant feedbade gain and ttre reli- 
ab i l i t y  of its implementation is equivalant t o  the 
convergence properties of a set o f  coupled Riccati- 
like matrix difference equatioru. 

In sunutazz-, t hese  resulrs can be used f a r  off- 
me s t d i e s  re lat ing ths open loop dynamics, rc- 
wed ,wfomance, actuator man tixw to failure. 
and t;mc'--ional a t  i&aatical actuator reduadaaq, 
with and vithout  feedback pia reconfiguraticm 
st rategies .  

1. Iatruduc-tioa 

Tbis sap- is an overrrFew of a research effoat- 
which addresses soma of tbe nrrrent problems in inter- 
facing syste.ms theory and r e l i ab i l i t y ,  and puts th is  
research in perspective wi'd the open questfans in 
a s  field. ReliahiUty is a relativa concept; it 
is. mugialy, the probabuty that a spstcn will per- 
form according to spacifications for a given aaount 
of tima. The n o t i n t i n g  question behind ttcLs report 
is: What consti tutes a W e  system? 

If a theary were available whir21 auawad a c o a  
parison between al ternate  designs, basad oa both the 
erpccted system r e l i a h i u t y  and the expected system 
perforaanca, it Mpld greatly sirppufy the current 
design methcdologp. It is dortuaate tht at pro- 
S e n t  t21e.m is AO accepted xathodology for a determin- 
a t ion o f  expected system performaws which accounts 
f o r  chnges  13 t !  pezZomance c!mracteristics due 
t o  fa i lure ,  repair a t  reconfiguration o f  system func- 
tions. 
a specif ic  c lass  of Linear system?, wit!! quadratic 
cost  c r i t e r i a .  

ThFs report presents such a nethoc?ohgy for 
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Basically, t he  r e U a b U i t y  of a system i s  the 
probability tbat tbe system will perform according 
to qacificatiorcz for  a given amount of tfae. ID 
a system-tkeozetic context, the specif icat ion which 
a system mast met is stabiUPG also, sinca,  a t  
l ea s t  for =st ~ l a t i ~ t i c a l  Llodels of systems, sta- 
b i l i t y  is a long-tezaatt t ibute o f  tie system, tke 
axmnt of ti=e for -which the system mast remain 
stable is *&en to Sa infinite. Therefore, t5e 
f0lluwL.g c?efiaibLo;?s o f  system reLiabiUty a re  
used i n  t h i s  pa?ez: 

Dc,fL.ition 1: A system ( i q l y i n g  t!e hardwaze con- 
t i p r a t i o n ,  o r  .lat!!enatical s d e l  of that configu- 
ration, m C  i-a associated control and e s - d t i o n  
s-r-cture) has r e l h b i l i t v  : r h e r a  z is t ! e  g r o S a -  
b U t y  that the s y s t m  will be stable f o r  a l l  tine. 

Definition 2: X systam is  said t o  be re l iab le  if 
t - 1. 
DefFnition 3: A r p t e m  6esig1, or configuration, 
is reLable  if it is stabilizable w i t h  probabili ty 
one .- 
These de l i&t icss  of r e l i a b i l i t y  depend on t!!e de- 
finition of s ta5Ut-~ ,  and for syste?tu vhicfi can 
have sore one d e  of operation, s t a b i l i t y  i s  
n o t  &%at easy t o  bstaraine. 12 t ! s  = a p e ,  stabi- 
lity will rsan ai&= mmn-square ~ * A i l . i ~ ~ 7  !me= 
c m  razd- q,.-r.. .ik'CL. .*= 
for the  rcczetxt), cr cost-sc%ibiUty (again, an ex- 
pectat ion -- a C R Z  random space),  w h i c h  is 
h i c a l l y  t h e  2roperty that the accuPulated cos t  
of system ope-aeon is 5 O u n M  with probabili ty 
me. (me def iz i t ioa  o f  cost is a lso  deferred.) 

The re l iabi l i? l  of a system will, depend on 
tL4 Z d i a b U * 3 i e S  o f  its various components ard on 
<id-- in te rconceonrr .  Exus, the  system engineer 
nusf have an understanding oi the probabilistic me- 
chnisms of c v n e n t  fai lue,  repair ,  and system 
rccoafiguration. 

l e f t  .&-,qecl:f& 

C o s p n a n t  fd lures ,  repairs, and :econfigura- 
tlau are zmchled in this papat by a .&irk00 chain. 
orrly c a ~ a t z s p h i c  c ! g c s  in the system strucfuzc 
are  considered; degradations axe not nodeled. The 
ha- rate is a3~1zed to be constant, resulting Fn 
an W n e n t f a l  failuze dis t r ibut ion.  I;1 the c i s -  
c te te - t im case, %J virich th is  paper i s  confined 
exclusivcljj, the  sard r a t e  becomes the pmbabili-  
ty of fa i lure  (or re?&- or reconficjurationl be- 
rmen tine t and fi..(A t+l. 

It is n w  n e c a s s a q  to defLne Frecisely the 
= d e s  of operaticn and t5e i r  dynamic t - a s i t i o n s .  
P.e terns s . r s t e 3  c=nficyraticx and svstem s t u c t u = e  
will be used. 
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Defiaition 4: System Structure: A possible mode 
of  operation for a given system; the components, 
t h e i r  interconnections, and the  information flar 
in the system 5 qiven time. 
DafFnitlOn 5 :  System Configuration: The or iginal  
design of the system, accouatbg tor  all modeled 
modes of o?eration, and the bkrkov chain governing 
the confiquat ion,  or st ructural ,  dynamics (t-ansi- 
dons -9 tke  various sttuctures). 
per ,  st;ructures are referenced by convention by 
tha set of non-negative integets 

In th is  pa- 

I E {0,1,2,3r---,L} (1.1) 
AU inrportMt question in  r eUab i I i t y  i s  the 

effect of redundancy on system performance. 
o ther  words, how should the allocation of control 
resouzcets be allocated to the redundant components, 
and how should the component reliabilities affect 
the c.hoice of an optimal control l a w ?  
met^'lodologies presented in this paper answer the 
question for a specif ic  class system configurations. 
They yi'eld a quaat i ta t tve analysis  of the tffec- 
tiveness of a given .system design, whare effe-ve- 
ness u a quantity re la t ing  both the perforwince 
and the reliability of a configuration design, 

optimal con tml  of system with randnmly varying 
st=ucmre, Mst  notable among these is Wonham 111, 
where tke solution t o  the continuous t ime Linear 
rqulator gmblesu with randculy jumping paramatars 
is dweloped. This solution is s i m i l a r  t o  the dis- 
=ate tinm swftctzFng gaia solution presented in 
S-on 3. 
€or the steady-state op- solution to the  con- 

however, the conclusion it only sufficient: it is 
not necessary. S W  result3 obtained in 
B e a r d  121 for  the existence of a stabilizing gain, 
where the structures were of a highly spec i f ic  form: 
tbese results were necessary and sufficient alge- 
braic conditions, but cauaot be readily generalized 
to less spec i f ic  classes of systems. 
mrk on the control  pmblem for tSis class of sys- 
tern9 5.3s baa.? done by 3irder i 3  j , 3acbe.r 6 ~ u a -  
bcrgcr [41, Bar-wtralom 6 Si- [SI, W i l l n e r  C61 
and Pie rce  6 Sworder [71. The dual p a l e m  of 
state estimation with a system w i t h  random parame- 
t e r  variations over a f M t e  sat was studied in 
CIMg 6 A t h a n s  [8l. 

Recently, the  robustness of the &ear qua- 
dratic regulator has been studied by Wonq, & al. 
[SI and Safonov & A t h a n s  [lo]. Section 6 of 6 
papar gives necessary and sufficient cQnditioL1s 
fo r  the existen=e of a robust linear constant gain 
cootrol l a w  f o r  a specific class o f  systems. 

Soua of t l a e  prelimhazy results on which this 
research vy based w e r e  presanted in unpublished 
fom a t  the 1977 Joint  Automatic Contxol C o n f e r -  
ence ia San E"rancisc0 by Sirdwell, and published 
f o r  the 1977 I€XE Conference on Decision and Con- 
trol Theory in New Orleans by B i r d w e l l  & A t h a n s  
[Ul. This paper is based on the r e sa t s  in 
airdwell [UJ. 

There are two major contributions of t 5 i s  re- 
search. First, the c lass i f ica t ian  of a system de- 
siqn as re l iab le  or unreliable has been equated 
w i t h  the exictexxce of a steady-state switching 
gain and cost  fo r  t ha t  design. 

In 

The control 

Previously, several authors have studied the 

Wonlam also proms an existeace result 

tra of systems w i t h  r a n a y  varying stractura: 

+tional 

If t h i s  gain does 

not exis+, then the system 2esign cannot be s tab i l -  
ize&; hence, it is unreliable. The only recotuse 
in such a case is to use xore reliable components 
and/or =re redundancy. 
2esiqn can '%eze.'c:e be d e t e - e e d  by a test for i: 
cocvergerie of ti,e sex  of coupled Ficcati-Like 
equation as t h e  f b a l  tine goes t o  infbity.  

The seccr.d a j o z  cont-ibution l i e s  Fn the ro- 
busaess  implicatiorzf. Precisely, a constant gain 
for a &ear f e e &  concol law for a set of li- 
neax syste!ns is sa id  to be tobust if t3at gain 
stabilires eacS -.ear systen bd i r i<ua l ly ,  i .e. ,  
without regard tke configuration dynamics. The 
problm of Ze-g whea such a gain exists, 
and of findjag a robust gain, can be formlatad in 
the contax+ of t ! !s  research. 3s a result, this 
metho&logy gives an algori#m for determining a 
robust 5a.h f a  a s e t  of l inear  sys tem which is 
op-1 wit!! z c s w -  t o  a wadratic cos t  cr i ter ion.  
If %!e algoritlm Ooes not converpe, then no robust 

2e l iab i l i ty  of a system 

g a b  exists. 
Por the p-se of brevity, most result -4.U 

be stated wi2-iout proof. 
proofs in refe-ence tu], and in the papers 

The reader may find these 

cw=ently ir, 2repkration. 

2. Problem Statement 

Consider -de systep 

%r= =t + %t) Z t  , 
Where 

x E Rn -t 
u E RD -t - A E R n X n .  
and, for each k, an element of an indexing 

k C I  - lo,r,2, . . . ,Ll 
9 E Rnxm 

g k E  f Q  'si' ' i E I 

Z t + l  - Et 
t E xL*l 

-k 
*era 

The index k(t) is a ran- vatiable taking 
I which is governed by a Markov chain and 

-t 
where iri,t fs the probability of k( t )  = i, 
on-line inforslation about k ( t ) ,  and Eo i s  
ial &htribution over I. 

(2.1) 

. (2.2) 

(2-3) 

(2.4) 

set I 

(2.5) 

(2-6) 

i 2 . i j  

values in 

(2.8) 

(2 *9 )  

give3 no 

the bit- 
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wia probability of occu-ance generated Lxaa the  
?iarkoo equation (2.8). 

T-1 - 
p'%.+ - n (2.U) k ( t ) , t  

where *.a control interval is 

Eo, 1.2,. . . ,T-L,T) ( 2 . W  

for the F i n i t e  time problem with terminal time T. 
Then fo r  a givan state and control  t ra jectory 

he tha quadratic cos t  critarion 

(2.U) 

Ths objective is to choose a feedback control 
l a w ,  w h i c h  may depend on any past infonnrrtion about 
x or%,, m a p s i n g x t i n t o u  
-t - -e 

(2.14) 

suc!! that t h  expected value of the  cost function 

JT 8 T  1 3 1  (2.16) 

is minimaz ed over a l l  gssible mappings & a t  t&. 

fi  Fmm equation (2.33) 

* 

3, The OptimaL Solutiorr 

N o d y ,  a control l a w  of the fonn (2 .S)  
must provide both a cont=ol aud an cstbatioa 
function in t h i s  type of problems hmca the label - drral cont-ol is used. E e r e ,  the s t v c t u r e  of the 
problem allows the  eract deteraFnation of k(t-1) 
from X t  , Et-1 for almost all values of gt-r- 
This result is stated in the  following lemma 
Lemma L [Ul: 

B 's are dist inct ,  the set 
L -k 

{x = A x  + B  u), hasdistinctmambsrs --k,-t+l -t -k-t 
for  almoet a l l  values of ut. 

for which the rP0nrb.r~ of 

For the  set {Ed k E I ,  where the . 

Ignoring the set of con+rols of IDLLasuTe zero 

(3-1) 

axe not distinct, then for (atoDst) any control 
which the optimal algorithm selects, the resul t ing 
s t a t e  5 
Set (3.l!++of an exact natch (of which there is 
o n l y  one w i t h  probability I), and k ( t )  is identi- 
fied as the generator of that matching member 

-k,t+l * 

q g o r i t ! !  can achieve, the opt- cont-01 law 
zt = b;kt 

can be c ~ a r e d  with the members o f  the 

x 

Since perfect  ident i f icat ion is t!e best  any 

can be calculated with the assumption 

t!mt k(t-1) is ho-m, since th is  is the case w i t h  
p robabi l i t i  one. Thus, this solution w i l l  be la- 
beled t i a  switchiza gain solution, sinca, for each 
t h a  t, Lil op-1 solut.=ons are calculatedaprior i ,  
and one solution is c!osen on-line For each time t, 
based on t!e ?as+ aeasuEemnts 5 ,  , x ~ - ~  and st, 
which yield Berfect knowledge o f  k(t-1). 

t k a l  svitc5ing gain solution. 
[ = I  t!at at each t be  t, the  op t i sa l  expeczed 
cost-to-go, e v e n  the syst- strucmxe k ( t - l ) ,  is 

Dyrw3ic prograrrmiq is used t o  derive the op- 
I t  has been proved 

wharc the  Sk,= are determined by a set of L+1 
coupled Riccau-like equations (one for each possi- 
ble configuration) I 

(3.31 

'xriting 
U -k, t - % k , t x t  

then 

(3.4) 

(3.5) 

(3-61 

* 

k(t-1) Ts det-ed by 

(3.7) 

's and t b  optimal gains 

k(t-1) i iff E+= 

Nota that the  S 
. G  Cam h C U U p l t ~ i * t O f f - l b 8  and StoZad. ThaR -krt  
a t  each t&m t, the proper gain i a  sslected z- 
&.e from k(t-11, ushg quatian (3.7), as in 
Figure 1. 

This solution is quite complex re la t ive  t o  
tAe structuze of *.e usual l inear  quadratic solu- 
tion. Sach of the Xiccati-like equations (3.71 
iavulves t ! !e  same complexity as the Riccati equa- 
t ion  for t!e l h e a z  quadratic solution. In addi- 
t ion,  there is t ! e  on-line complexity arising 
frun the bplesenta+2on of gain scheduling. In 
Section 4 ,  a aon-switchfng gain solution w i l l  be 
presented w h i c h  has an ident ical  on-line struc- 

- 
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tnrs to t h a t  of t!ie b e a r  guadatic solution, but 

that  of the switching gain Solution. 
switching gain solution is suboptimal, but requires 
less on-line complexity. 

has simflnr o f f - b s  ccanputatiorral calllplaxity t o  
This non- 

x steady-state solutian t o  equation (3.7) -y 
exist, but the conditions f o r  its existenice are 
unknova. The s t e a d y i t a t e  solution orould ham the 
advantage that only ane set o f  gains need & stored 
on-line, instsad of requiring a s e t  of gains ta k 
stored for each fipq t. 
sohatLon i s  simply the d u e  to w h i c h  eau+ion (3.7) 
converges as it is i terated backward frr tim, at 
present. the equations cau be iterated n-ricaUy 
until e i ther  they converge o r  m e e t  soae test: of 
non-convergence. 
solutions in  the switching gain congutations is 
excluded by the following lempla: 
Lemma 2 t121: I f  the op t ina l  expectad cost-to-go 
at time t is bounded fox a l l  t, then equation (3.7) 
convesges. 

the switching gain 2roblem establishes a division 
of system designs ia+o those w b i c h  are inherently 
reliable and those w h i c h  are unreliable. Even 
though conditions to twt: for the e&stence of the 
steady-state solution are unavailable, software. 
can be used with i terat ion for the test. 

S i n c a  th. steady-sa ta  

The possibility of Ut cycle 

The exismce of a steady-sate solution to 

4. The tkx-suitchhg Gain Solution 

this saction. thb'pemissible controls are 
res t r ic ted  to be of the -ear feedbac!! form 

Vt' sits, (4-11 

where the gain m a t - i x  G is rest r ic ted t o  be 2 
function only OF t h e  a n i i X ! Z Z Z T c o n d i t i o n s ;  
i . e . ,  it cannot deoend on x or I . Ths objective 
is t o  minimize over the settof adissible cent-ols 
the expectation of (2.13) where the expacC3tion iS 
taken over the s e t  of possible s t v c r u ~ a l  trajec- 
to r ies  

- ------- 

(4.2) 
- 
x T E 4  

ar.d the s e t  of %&; -33. conditions x The re- 
s-xlting c o n t z l  law ;rill be a non-s-atching law,  
=skrg gaias Cet&ed apriori. 

should -ze +de cost  

-a - 
. *  

%us, the c_c'lrrrZ cone01  law st = (it~t 

over *e s e t  of adr~ssibh controls. 
Since the s t - e e  of-% = G  x is fixed. 

p r ~ b l e a  i s  equivalent to  G t z L ! ,  in an 
o_wn-loop sense, *&e cost  function 

(4.4) 

via respect t3 *e gain matrix 5 , t-0.1.. ..,~-l. 

used to de- *e necessazy conditions for the 
&stance of 2: (or e q u i d e n t l y ,  g"+ 1 .  L e t  t!!e 
kritfal state go be a zero mean ran?!om variable 
whfch is i c d e p c r a t  of any s tnacture .  

Tho uaczix ztiaimm principle 0% A t h a n s ( 1 3 1  is 

ut 

h the covaxbcca JatrLE of x . 
celiaing the covariance o f  zio as 

and if '40 definh 

t!an tha nat-ix can be defined recursively as 

aad the relation 
L 

(4.10) 
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T T  T-1 
+ x  G R G x  z 

&QXt -t-t-t-t JT = E- 

T T  A+G B S 
T L 

+ E B - L ,  j i  7 '2 Sj,:+l--t- f 3, t+l!, G t  
1.9 j t  

(4.17) - 1 (2 + G t E t ) I  + t t [ c T Q l  (4.11) + A T 3 . G t + G  T T  B S 

1 T 
+ cTPxT~CO 'SO 

T T-1 

tro --j  lt+l-)- - t -t - j ,t+L - 
Note t h a t  since the expectation in  equation ( 4 . 4 )  
is war all structural t ra jector ies  2 and the bi- 

T h i s  equation is well-defined for any sequence 

T-l and t >  0. The cost V of using th is  ZU- 

bit=ary sequence over the interva~ f ~ 2 ,  ..., TI is 
given by 

tialro also,  &J -0 

(4.U) 
E 

Jll* J, A A  

me -1 JT will ba mad a c l a - l y  Fn the ftr- 
fare. The one-stage, or instaataneous, cost a t  
t i m e t i s  
t T 

J T -  tr[& ($2 + gt&5+)1 (4.U) 

Problem &e is ccmpletaly deterministic Fn tho 
State (&i,t)i+ , go and c0~1tr01 G 

A t  this point, the n i n i t i o a  is decomposed 
into two par t s  using the Principle of w i t y  
'141. The first minimization i.s ovur the iaterval 
(1,2 ,... ,T-L), and for this the matrix minirmna 
principle Will be used. 
depends in  general on the choice of go and on the 
i n i t i a l  conditions Lo and r r o .  

from the use-& 

g$,- - . , g;-l fot thr, krterval {1,2, ..., TI. 

-t - 

The rasulting solution 

. 

Let  v* (G be the o p ~  cost resating 
go 

* 

tbe optkaal sequarrca gl, 

The second 4 tF00 L them over goof  tha cost 

JT-  tr[x -0 (4-14) 

The Principle of Optimdity  states tha t  theso 
min imiza t ions  result in the minimizing saqueace 

T-1 (gt)t.9 for Problem Ae. 

LmFzatton Over h , 2 ,  ..., ~-11 is 
Prom l A t h a n s ,  131, the Hamiltonian for the min- 

L 
* * E t  i* it - l - i , t lQ t + G ~ R G  -t--t 

(&+Ej Gt  IT) 5,,t+l] 

for t E: (1,2,3 ,..., T-1) (4.151 

where the costate  z m t r i x  is (zj,t+l jlo. 

Frcm the necessary condltLon f o r  the costate, 

Def h e  

(4; 2lJ 

t!!e followfng relatioo bae-en 
G is obtabed. -t 

i,t,sj,t+l , and 

- .Remark: 
problem lxei been C e f f n e d  iris t he  constraint (4.22) 
r e h t h q  w e a n s  (4.17) and (4.8). Equation 
(4.22) is not exp l i c i t l y  solvable f o r  Ctbacause 
t -A.t . 
it c u a o t  be usad 69 a subs*d.;ltutfon rule ia tha 
othd=tyo fquatAxs. 
of G agprart intractable. Thus, altb,qh nacss- 
--'iondidons f o r  t?ie existence of G 
mlnhhing q a b ,  have been establishz:,L:ey do 
not readily a l l o w  for the solution of G 
c m y  cio EOC a t  a closed-fom &ssion. 

5. Steady-State Son-Switching Cain Solutions 

A t  this paint, a tuo-point boundarg value 

cannot be factored out of th? sua over j; thus 

A t  this -8, the solution 

the 

and 

In t h i s  Section a modified version of Problem 
A i s  solved which y i e l d s  u c o q u t a t i o n a l  methodo- 
logy for computing :!e cpt i3a l  steady-state non- 

t h a t  t!! solutian to th is  modified problem con- 
verges to tila samn firnit as the prablem in the 

(4.16) 

the propagafian of s backward i n  time it derived. rdtchi?g soiudons. It ,,ill ba est&lLsh& -i,t 
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l a s t  section. 
Definition 6: (Stabi l i ty)  5 is a constant 
s tab i l iz ing  gain if and only if the r e d t i n g s y s t e m  

- t+l 

is mean-square stable:  

x = - A z t + B  -k( t )  (5.1) 

E[lCtXtl  * o  as t + "  

I T  T 
-0 ztPXt+2t'u, OD 

T 

Definition 7: (Cost-StabUty) The system (5.1) 
i", cost-stable if  aud only if  

w i t h  p r o b a b i l i e  OM. 

minlmilntFQn of 
The LnfiPitq-tima aroblem is defined M a 

(5-2) 

where J 
ing fin&e-tiine pmblem. 
solves* t$e inffnite-tim versions of Problem Ae 

w i l l  ejcist i f  there  e x i s t s  a sequence of gains 
for which the l i m i t  ia equation (5 .2 )  exists. 
m s  defini t ion of the infinite-tine problem is 
closen rather than t!!e definition requiring a 
minimization of the average cost  pe r  u n i t  t i s o  

is the ccs t  fract ion for the correspond- 
The seq~lencm w h i &  

is (5, )tro When a Solution exists- A Solution 

J 1 p U  - J  1 
T T  T+o 

(5.31 

because t h e e  is a direct correlation between the 
boundedness of J 
quence of gains gad mean squa.rm stabUty of 

- over all T for a constant se- 

the system (5.1). 

and existence of a steady-state solution axe 
related by the following leunuas (121: 
Leama 3: 
man-square s t a b w z i n g  if and only if there e s i s t s  
a sound a<- such that J T< B V T. 
Lenm!a 4 :  Any sequence (gt 1"' 
(5.1) (with probabiUty one)-if and only i f  J<% 

defined as the limiting solution to  equations (4.8) 
(4.17) and (4.22) at t ime t, f i r s t  as 'cco and then 
as * , if this Ut exists. The steady-state 
palues for 5, 5 .  , and , when they exist, sa- 
tis- the fo-ig equa2ionsr 

L 

The cancep- of stabiUty, c08t-stabiuty8 

0 
A constant sequence of gain3 (g)t.Io is 

cost-stabil izes 

The steady-state solution for Problem ;IE is 

(5.5) 

The fol lowing meorem yields an expl ic i t  
procedure for  t b  calculation of the steady-state 
nan-switchirrg con-sol law. 
Theoren: Daffne the sequeace (G by the -ns -0 f o l l w b g  equaeons: 

for a given temi.naL t2ae T and 

where 

S I  (T) - p + GT 3 G 
t - k , t  ast- -3 

(5.9) 

(5.10) 

(5.11) 

+ CATS) h + 'jk - j , t+ l  - f-0 

I 

&,,(T) - Q tor, kf I (s.iz) 
[The  parauater (TI is suppressed on the r igh t  hand 
r ib  of equations (5.9 1 and (5 . l l l . j  
h e n  &e follcwisg s ta temants  =e equivalent. 
1) The gain sequerrce (Ens cost-stabil izes 

co 

t &+l- A X t +  &t, - U f 

3 )  

4) 
stabillzing. 
.ia addition, Ff 

B cost-stabil ir ing sain sequence e x i s t s .  
* m  

?he solution *a ?reble?~ A, (5,) tro is cost- 

G (steady-state) exists 
then 

Gns 'C 

(5.13) 

(5.14) 

The proof can be found in airdwell  [l2]. The 
derivation of equations (5.91, (5.11) and (5.12) 
can be found in S F r l v e l l  and A t h a n  [ill and airdxeil 
[X?]. A for^-\ccnbg laper  w i l l  contain ths complete 
t!!eoren and ,roof. Lquat2on ( 5 . 9 )  to (5.12) w i l l  
hereai tsr  be refezsd t? as L5e solutions to Problem 
9, which is descrked b (12) and is cnitted here 
due t o  lack of -ace. The zesul ts  of -Ais theorem 
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k ( t )  E co ,1,23 give a d t rec t  ccaputational p r o c a d q  for  calcula- 
t ing  the op- steady state qa-b 5 as the Limit 
of gains G . There are sane questions as t o  the 
~ s s i b i l i G j " o f  Limit cycles on the calculation of - G E w e w ,  th3 theorem guarantees cost-stabi- 
12% using (gns2 fro whenever the system is 

The cost  to Se n h i n ~  '-ed is 

6. . Robustness 

2 The or ig ina l  problem ( P r o b l a  A) can be fos- 
sllllated in such a way tha t  the sequence (C, ltr0 

w i l l  cost-stabilize a s a t  of linear systems w i t h  
U f e r e n t  -tar structures individually whenever 
such a stabfliziag or robust gain exists. 

DcfMt ion  8r A gafn 5 i s  tobust if 

t 

X t + l '  (A + B;,Qxt . (6-1) 

is stable fo r  all k. 
the matrix (&+zkg) to have eigenvalues inside ths 
unit circle for a l l  k. 
mrol l a ry  1: 

This is the same as requiring 

For the set of L+1 systems 

X t + , ' A X  t + B  -k-t u (6.2) 

with 

P = I  
1 

T j  = Lcl 
m 

if a robust gain exists, then (G is a 
stabilizing sequence for  (6.1) f o r  each k, and if 
the gakrs G (T) commxqa* than Cns is a robust 

-=t 

gain. -5 
Discussion: With Corollary 1, a specific existence 
problem f o r  robust linear gains is solved. Exis- 
terice of a robust gain is made equivabnt to the 
existence of a f i n i t e  cost infinite-time solution 
t o  Problem B, which is readlly cornputable.frcan 
equations (5.9) and (5.l.l). 

Consider the  system whose transitions are 
shown in Figure 2. 
modeled as being in any structural s t a t e  w i t h  equaL 
probability o f  occnrance i n i t i a l l y  and remaining 
in that state forever; this ppodel is i l lus t ra ted  
graphically in liqure 2.b.10~. 

The configuration dynamics are 

- - --_--_. 
7-wao 

Figure 2: Markov t-ansition probabi l i t ies  for 
the Example. 

The matrices are  given by 

2.71828 0.0 

[ O - 0  .367.] 9' & -  

0.0 i.7ia2a 1.71828 0.0 

"' [O.O .63212l "' [-.63212 0 . d  

For these murices, equatLons (5. 9 )  a d  
conveqe, giVir.9 tbe followicg results: 

r-1.089 -.0084U1 

J "'= L-i-a28 -.a1444 

2 112.8 8.992 

i=o 8.992 6.835 1 Tis; = 1 J 4 2 
A brlef  check will verify that 
robust gda. P..e Riccati solutions for  this problem 
are 

is indeed a 

EO , = r 9 . 8  9.0301 s;, r 4 . 3  6.2851 

9.030 6.82: 6.285 6.836 

S I =  -' 111.66 6.8491 

The non-suitc!!g solution converges fo r  this 
system. and the t k e e  resul*&g canfigurations are 
stabilized. Therefore 4 is a robust gain. md 
the solution not convezz8, by Corollary 1, no =a- 
bust gain srould exist. The apr ior i  ex;rec:ed cos t  
(before the con2hjuration state is known) is, given 
X: 

J = x =  
- 

T 

7. Conclusion 

In condusian, &e u a i f f g  concept of this 
What constitutes a r U l e  control report is: 

system, or a rellaSle design? A major connection 
w a s  establ ish& in th is  research barmen the con- 
cepts of r e l i ab i l i t y  and s tab i l i rab i l i ty .  Itera- 
t ive  procedures sh-e developed for th!e determina- 
tion of whetber or not a givcn Lineax system of the 
type consicle-ed in :his report is reliable, wit!! 
respect t o  both =on-switching and suitching gain 
coatrollezs. A systen Cesign is re l iab le  i f  and 
only if the s e t  of cowled hiccati-iike matrix 
difference equations for t+.e riitc'ti3q gain solu- 
tion converqes. Ia addition, i f  the nat-ix cliffer- 
ence equations convYrge for t!!e non-switching gain 
solution, then =!e non-switching cont=ol l a w  yields  
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a robust system; Fi they dims, no robust gain 9. 
exists. 

Sfrdvell [XI. r;rO --pets in prepantian w i l l  con- 
tain the ?roofs of t!!e results vhich are stated 
here. l3. 

"kis paper i n  an overview of the resul ts  in 
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